如图,在平面直角坐标系中, O 为坐标原点, ΔABO 的边 AB 垂直与 x 轴,垂足为点 B ,反比例函数 y = k x ( x > 0 ) 的图象经过 AO 的中点 C ,且与 AB 相交于点 D , OB = 4 , AD = 3 ,
(1)求反比例函数 y = k x 的解析式;
(2)求 cos ∠ OAB 的值;
(3)求经过 C 、 D 两点的一次函数解析式.
如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.
计算:.
把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN. (1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接 写出结论; (2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 图1图2
如图,在平面直角坐标系xOy中,直线与轴交于点A(,0),与轴交于点B,且与直线:的交点为C(,4) . (1)求直线的解析式; (2)如果以点O,D,B,C为顶点的四边形是平行四边 形,直接写出点D的坐标; (3)将直线沿y轴向下平移3个单位长度得到直线,点P(m,n)为直线上一动点,过点P作x轴的垂线, 分别与直线,交于M,N.当点P在线段MN上时,请直接写出m的取值范围.
如图,矩形ABCD的对角线AC,BD交于点O, DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD="8." (1)求BF的长; (2)求四边形OFCD的面积.