初中数学

如图,在平面直角坐标 xOy 中,正比例函数 y = kx 的图象与反比例函数 y = m x 的图象都经过点 A ( 2 , 2 )

(1)分别求这两个函数的表达式;

(2)将直线 OA 向上平移3个单位长度后与 y 轴交于点 B ,与反比例函数图象在第四象限内的交点为 C ,连接 AB AC ,求点 C 的坐标及 ΔABC 的面积.

来源:2016年四川省成都市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图, AOB = 90 ° ,反比例函数 y = - 2 x ( x < 0 ) 的图象过点 A ( - 1 , a ) ,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象过点 B ,且 AB / / x 轴.

(1)求 a k 的值;

(2)过点 B MN / / OA ,交 x 轴于点 M ,交 y 轴于点 N ,交双曲线 y = k x 于另一点 C ,求 ΔOBC 的面积.

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

若抛物线 L y a x 2 + bx + c abc是常数, abc 0 )与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.

(1)若直线 y mx + 1 与抛物线 y x 2 - 2 x + n 具有“一带一路”关系,求mn的值;

(2)若某“路线”L的顶点在反比例函数 y 6 x 的图象上,它的“带线”l的解析式为 y 2 x - 4 ,求此“路线”L的解析式;

(3)当常数k满足 1 2 k 2 时,求抛物线 L y a x 2 + 3 k 2 2 k + 1 x + k 的“带线”lx轴,y轴所围成的三角形面积的取值范围.

来源:2016年湖南省长沙市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,函数 y = x 的图象与函数 y = k x ( x > 0 ) 的图象相交于点 P ( 2 , m )

(1)求 m k 的值;

(2)直线 y = 4 与函数 y = x 的图象相交于点 A ,与函数 y = k x ( x > 0 ) 的图象相交于点 B ,求线段 AB 长.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.

来源:2016年湖南省常德市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知一次函数 y = kx + b 与反比例函数 y = m x 的图象交于 A ( - 3 , 2 ) B ( 1 , n ) 两点.

(1)求一次函数和反比例函数的表达式;

(2)求 ΔAOB 的面积;

(3)点 P x 轴上,当 ΔPAO 为等腰三角形时,直接写出点 P 的坐标.

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,直线 y ax + b 与反比例函数 y = m x ( x > 0 ) 的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于CD两点.

(1)m   n   ;若 M x 1 y 1 ), N x 2 y 2 是反比例函数图象上两点,且 0 x 1 x 2 ,则y1   y2(填“<”或“=”或“>”);

(2)若线段CD上的点Px轴、y轴的距离相等,求点P的坐标.

来源:2016年湖北省襄阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,点 P 为函数 y = 1 2 x + 1 与函数 y = m x ( x > 0 ) 图象的交点,点 P 的纵坐标为4, PB x 轴,垂足为点 B

(1)求 m 的值;

(2)点 M 是函数 y = m x ( x > 0 ) 图象上一动点,过点 M MD BP 于点 D ,若 tan PMD = 1 2 ,求点 M 的坐标.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 y = x + | - 2 x + 6 | + m 性质及其应用的部分过程,请按要求完成下列各小题.

x

- 2

- 1

0

1

2

3

4

5

y

6

5

4

a

2

1

b

7

(1)写出函数关系式中 m 及表格中 a b 的值:

m =    a =    b =   

(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:   

(3)已知函数 y = 16 x 的图象如图所示,结合你所画的函数图象,直接写出不等式 x + | - 2 x + 6 | + m > 16 x 的解集.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 2 , 3 ) B ( n , - 1 )

(1)求反比例函数和一次函数的解析式;

(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;

(3)写出不等式 k 1 x + b k 2 x 的解集.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,一次函数 y 1 = kx + b ( k 0 ) 与反比例函数 y 2 = m x ( m 0 ) 的图象交于

A ( 1 , 2 ) B ( - 2 , a ) ,与 y 轴交于点 M

(1)求一次函数和反比例函数的解析式;

(2)在 y 轴上取一点 N ,当 ΔAMN 的面积为3时,求点 N 的坐标;

(3)将直线 y 1 向下平移2个单位后得到直线 y 3 ,当函数值 y 1 > y 2 > y 3 时,求 x 的取值范围.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,正比例函数 y = 1 2 x 与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ,过点 A AB y 轴于点 B OB = 4 ,点 C 在线段 AB 上,且 AC = OC

(1)求 k 的值及线段 BC 的长;

(2)点 P B 点上方 y 轴上一点,当 ΔPOC ΔPAC 的面积相等时,请求出点 P 的坐标.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,反比例函数 y = k x ( k 0 ) 的图象与正比例函数 y = 2 x 的图象相交于 A ( 1 , a ) B 两点,点 C 在第四象限, CA / / y 轴, ABC = 90 °

(1)求 k 的值及点 B 的坐标;

(2)求 tan C 的值.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A 的坐标为 ( 0 , 2 ) ,点 B 的坐标为 ( 1 , 0 ) ,连结 AB ,以 AB 为边在第一象限内作正方形 ABCD ,直线 BD 交双曲线 y = = k x ( k 0 ) D E 两点,连结 CE ,交 x 轴于点 F

(1)求双曲线 y = k x ( k 0 ) 和直线 DE 的解析式.(2)求 ΔDEC 的面积.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知,如图,一次函数 y = kx + b ( k b 为常数, k 0 ) 的图象与 x 轴、 y 轴分别交于 A B 两点,且与反比例函数 y = n x ( n 为常数且 n 0 ) 的图象在第二象限交于点 C CD x 轴,垂足为 D ,若 OB = 2 OA = 3 OD = 6

(1)求一次函数与反比例函数的解析式;

(2)求两函数图象的另一个交点坐标;

(3)直接写出不等式: kx + b n x 的解集.

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

初中数学反比例函数与一次函数的交点问题解答题