如图,在平面直角坐标 xOy 中,正比例函数 y = kx 的图象与反比例函数 y = m x 的图象都经过点 A ( 2 , − 2 ) .
(1)分别求这两个函数的表达式;
(2)将直线 OA 向上平移3个单位长度后与 y 轴交于点 B ,与反比例函数图象在第四象限内的交点为 C ,连接 AB , AC ,求点 C 的坐标及 ΔABC 的面积.
如图,在平面直角坐标系中,点是反比例函数图象上一点,⊥轴于点,一次函数的图象交轴于,交轴于点,并与反比例函数的图象交于两点,连接若△的面积为4,且.(1) 分别求出该反比例函数和一次函数的解析式;(2) 求△的面积.
先化简,再求值:,其中是不等式 的最大整数解。
已知在△中,∠=30°,,,求△的周长. (结果保留根号)
如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,求线段DF的长.
已知函数y ="(2m+1)" x+ m-3(1) 若函数图象经过原点,求m的值 (2) 若函数图象在y轴的交点的纵坐标为-2,求m的值(3)若函数的图象平行直线y=3x–3,求m的值 (4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.