已知,如图,一次函数 y = kx + b ( k 、 b 为常数, k ≠ 0 ) 的图象与 x 轴、 y 轴分别交于 A 、 B 两点,且与反比例函数 y = n x ( n 为常数且 n ≠ 0 ) 的图象在第二象限交于点 C . CD ⊥ x 轴,垂足为 D ,若 OB = 2 OA = 3 OD = 6 .
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式: kx + b ⩽ n x 的解集.
已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值
已知:如图,∠B=90°,AB∥DF,AB=3cm,BD=8cm,点C是线段BD上一动点,点E是直线DF上一动点,且始终保持AC⊥CE.(1)试说明:∠ACB =∠CED (2)若AC="CE" ,试求DE的长 (3)在线段BD的延长线上,是否存在点C,使得AC=CE,若存在,请求出DE的长及△AEC的面积;若不存在,请说明理由。
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,B,C,D的坐标;(2)求点A和点C之间的距离
如图,长方体的底面是边长为1cm 的正方形,高为3cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请计算所用细线最短需要 cm?(2)如果从点A开始经过4个侧面缠绕3圈到达点B,那么所用细线最短需要 cm.(直接填空)
如图,点B、F、C、E在一条直线上,BF=EC,AB∥ED,AC∥FD,求证:AC=DF.