初中数学

如图,点 P 为函数 y = 1 2 x + 1 与函数 y = m x ( x > 0 ) 图象的交点,点 P 的纵坐标为4, PB x 轴,垂足为点 B

(1)求 m 的值;

(2)点 M 是函数 y = m x ( x > 0 ) 图象上一动点,过点 M MD BP 于点 D ,若 tan PMD = 1 2 ,求点 M 的坐标.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知直线 l : y = - x + 5

(1)当反比例函数 y = k x ( k > 0 , x > 0 ) 的图象与直线 l 在第一象限内至少有一个交点时,求 k 的取值范围.

(2)若反比例函数 y = k x ( k > 0 , x > 0 ) 的图象与直线 l 在第一象限内相交于点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,当 x 2 - x 1 = 3 时,求 k 的值,并根据图象写出此时关于 x 的不等式 - x + 5 < k x 的解集.

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 1 , 2 ) B ( m , 1 )

(1)求这两个函数的表达式;

(2)在 x 轴上是否存在点 P ( n 0 ) ( n > 0 ) ,使 ΔABP 为等腰三角形?若存在,求 n 的值;若不存在,说明理由.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,一次函数 y 1 = ax + b 与反比例函数 y 2 = 4 x 的图象交于 A B 两点.点 A 的横坐标为2,点 B 的纵坐标为1.

(1)求 a b 的值.

(2)在反比例 y 2 = 4 x 第三象限的图象上找一点 P ,使点 P 到直线 AB 的距离最短,求点 P 的坐标.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,反比例函数的图象与过点 A ( 0 , - 1 ) B ( 4 , 1 ) 的直线交于点 B C

(1)求直线 AB 和反比例函数的解析式;

(2)已知点 D ( - 1 , 0 ) ,直线 CD 与反比例函数图象在第一象限的交点为 E ,直接写出点 E 的坐标,并求 ΔBCE 的面积.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,一次函数 y = kx + b 的图象与反比例函数 y = m x 的图象在第一象限交于点 A ( 4 , 2 ) ,与 y 轴的负半轴交于点 B ,且 OB = 6

(1)求函数 y = m x y = kx + b 的解析式.

(2)已知直线 AB x 轴相交于点 C ,在第一象限内,求反比例函数 y = m x 的图象上一点 P ,使得 S ΔPOC = 9

来源:2017年四川省广安市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y 1 = kx + b 的图象与反比例函数 y 2 = 4 x 的图象交于点 A ( 4 , m ) ,且与 y 轴交于点 B ,第一象限内点 C 在反比例函数 y 2 = 4 x 的图象上,且以点 C 为圆心的圆与 x 轴, y 轴分别相切于点 D B

(1)求 m 的值;

(2)求一次函数的表达式;

(3)根据图象,当 y 1 < y 2 < 0 时,写出 x 的取值范围.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,函数 y = 2 x , ( 0 x 3 ) x + 9 , ( x > 3 ) 的图象与双曲线 y = k x ( k 0 , x > 0 ) 相交于点 A ( 3 , m ) 和点 B

(1)求双曲线的解析式及点 B 的坐标;

(2)若点 P y 轴上,连接 PA PB ,求当 PA + PB 的值最小时点 P 的坐标.

来源:2017年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图所示,直线 y = k 1 x + b 与双曲线 y = k 2 x 交于 A B 两点,已知点 B 的纵坐标为 3 ,直线 AB x 轴交于点 C ,与 y 轴交于点 D ( 0 , 2 ) OA = 5 tan AOC = 1 2

(1)求直线 AB 的解析式;

(2)若点 P 是第二象限内反比例函数图象上的一点, ΔOCP 的面积是 ΔODB 的面积的2倍,求点 P 的坐标;

(3)直接写出不等式 k 1 x + b k 2 x 的解集.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 y = x + | - 2 x + 6 | + m 性质及其应用的部分过程,请按要求完成下列各小题.

x

- 2

- 1

0

1

2

3

4

5

y

6

5

4

a

2

1

b

7

(1)写出函数关系式中 m 及表格中 a b 的值:

m =    a =    b =   

(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:   

(3)已知函数 y = 16 x 的图象如图所示,结合你所画的函数图象,直接写出不等式 x + | - 2 x + 6 | + m > 16 x 的解集.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 2 , 3 ) B ( n , - 1 )

(1)求反比例函数和一次函数的解析式;

(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;

(3)写出不等式 k 1 x + b k 2 x 的解集.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,一次函数 y 1 = kx + b ( k 0 ) 与反比例函数 y 2 = m x ( m 0 ) 的图象交于

A ( 1 , 2 ) B ( - 2 , a ) ,与 y 轴交于点 M

(1)求一次函数和反比例函数的解析式;

(2)在 y 轴上取一点 N ,当 ΔAMN 的面积为3时,求点 N 的坐标;

(3)将直线 y 1 向下平移2个单位后得到直线 y 3 ,当函数值 y 1 > y 2 > y 3 时,求 x 的取值范围.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,正比例函数 y = 1 2 x 与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ,过点 A AB y 轴于点 B OB = 4 ,点 C 在线段 AB 上,且 AC = OC

(1)求 k 的值及线段 BC 的长;

(2)点 P B 点上方 y 轴上一点,当 ΔPOC ΔPAC 的面积相等时,请求出点 P 的坐标.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,反比例函数 y = k x ( k 0 ) 的图象与正比例函数 y = 2 x 的图象相交于 A ( 1 , a ) B 两点,点 C 在第四象限, CA / / y 轴, ABC = 90 °

(1)求 k 的值及点 B 的坐标;

(2)求 tan C 的值.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A 的坐标为 ( 0 , 2 ) ,点 B 的坐标为 ( 1 , 0 ) ,连结 AB ,以 AB 为边在第一象限内作正方形 ABCD ,直线 BD 交双曲线 y = = k x ( k 0 ) D E 两点,连结 CE ,交 x 轴于点 F

(1)求双曲线 y = k x ( k 0 ) 和直线 DE 的解析式.(2)求 ΔDEC 的面积.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学反比例函数与一次函数的交点问题解答题