如图,函数 y = 2 x , ( 0 ⩽ x ⩽ 3 ) − x + 9 , ( x > 3 ) 的图象与双曲线 y = k x ( k ≠ 0 , x > 0 ) 相交于点 A ( 3 , m ) 和点 B .
(1)求双曲线的解析式及点 B 的坐标;
(2)若点 P 在 y 轴上,连接 PA , PB ,求当 PA + PB 的值最小时点 P 的坐标.
端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进、两种粽子1100个,购买种粽子与购买种粽子的费用相同.已知种粽子的单价是种粽子单价的1.2倍.
(1)求、两种粽子的单价各是多少?
(2)若计划用不超过7000元的资金再次购进、两种粽子共2600个,已知、两种粽子的进价不变.求种粽子最多能购进多少个?
已知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,且.
(1)求反比例函数与一次函数的表达式;
(2)若点为轴上一点,是等腰三角形,求点的坐标.
为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整)
组别
分数
人数
第1组
8
第2组
第3组
10
第4组
第5组
3
请根据以上信息,解答下列问题:
(1)求出,的值;
(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;
(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?
先化简,再求值:,其中.
如图1,在平面直角坐标系中,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一交点为.
(1)求抛物线解析式及点坐标;
(2)若点为轴下方抛物线上一动点,连接、、,当点运动到某一位置时,四边形面积最大,求此时点的坐标及四边形的面积;
(3)如图2,若点是半径为2的上一动点,连接、,当点运动到某一位置时,的值最小,请求出这个最小值,并说明理由.