计算:
根据要求解下列关于x的方程(用配方法解)
先化简,再求值:,其中.
如图,抛物线与轴交于两点,与轴相交于点.连结AC、BC,B、C两点的坐标分别为B(1,0)、,且当x=-10和x=8时函数的值相等.求a、b、c的值;若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.连结,将沿翻折,当运动时间为几秒时,点恰好落在边上的处?并求点的坐标及四边形的面积;上下平移该抛物线得到新的抛物线,设新抛物线的顶点为D,对称轴与x轴的交点为E,若△ODE与△OBC相似,求新抛物线的解析式。
有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为Y元,写出Y关于x的函数关系式;为了使鲜葡萄的销售金额为760元,又为了尽早清空冷藏室,则需要在几天后一次性出售完;问个体户将这批葡萄存放多少天后一次性出售,可获得最大利润?最大利润是多少?(本题不要求写出自变量x的取值范围)
如图,已知:边长为1的正方形ABCD内接于⊙O,P为边CD的中点,直线AP交圆于E点.求弦DE的长;若Q是线段BC上一动点,当CQ长为何值时,三角形ADP与以Q,C,P为顶点的三角形相似。