如图所示,直线 y = k 1 x + b 与双曲线 y = k 2 x 交于 A 、 B 两点,已知点 B 的纵坐标为 − 3 ,直线 AB 与 x 轴交于点 C ,与 y 轴交于点 D ( 0 , − 2 ) , OA = 5 , tan ∠ AOC = 1 2 .
(1)求直线 AB 的解析式;
(2)若点 P 是第二象限内反比例函数图象上的一点, ΔOCP 的面积是 ΔODB 的面积的2倍,求点 P 的坐标;
(3)直接写出不等式 k 1 x + b ⩽ k 2 x 的解集.
如图,已知四边形ABCD中,,M、N分别为AB、CD的中点,求证:
中,BE、CF分别平分和,于E,于F,求证:EF//BC
如图,ΔABC中,AD是高,CE是中线,G是CE的中点,DG⊥CE,G为垂足,证明:DC=BE。
如图,BD平分∠ABC交AC与点D,点E为CD上一点,且AD=DE,EF∥BC交BD于点F。求证:AB=EF
如图,已知AB=AC,AD=AE.求证:BD=CE.