初中数学

请阅读以下材料:已知向量 a = ( x 1 y 1 ) b = ( x 2 y 2 ) 满足下列条件:

| a | = x 1 2 + y 1 2 | b | = x 2 2 + y 2 2

a b = | a | × | b | cos α (角 α 的取值范围是 0 ° < α < 90 ° )

a b = x 1 x 2 + y 1 y 2

利用上述所给条件解答问题:

如:已知 a = ( 1 , 3 ) b = ( 3 3 ) ,求角 α 的大小;

解: | a | = x 1 2 + y 1 2 = 1 2 + ( 3 ) 2 = 2

b = x 2 2 + y 2 2 = ( 3 ) 2 + 3 2 = 12 = 2 3

a b = | a | × | b | cos α = 2 × 2 3 cos α = 4 3 cos α

a b = x 1 x 2 + y 1 y 2 = 1 × ( 3 ) + 3 × 3 = 2 3

4 3 cos α = 2 3

cos α = 1 2 α = 60 °

α 的值为 60 °

请仿照以上解答过程,完成下列问题:

已知 a = ( 1 , 0 ) b = ( 1 , 1 ) ,求角 α 的大小.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ABCO 在平面直角坐标系中的位置如图所示,直线 y 1 = kx + b 与双曲线 y 2 = m x ( m > 0 ) 在第一象限的图象相交于 A E 两点,且 A ( 3 , 4 ) E BC 的中点.

(1)连接 OE ,若 ΔABE 的面积为 S 1 ΔOCE 的面积为 S 2 ,则 S 1   =   S 2 (直接填“ > ”“ < ”或“ = )

(2)求 y 1 y 2 的解析式;

(3)请直接写出当 x 取何值时 y 1 > y 2

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,坐标原点 O 是菱形 ABCD 的对称中心.边 AB x 轴平行,点 B ( 1 , 2 ) ,反比例函数 y = k x ( k 0 ) 的图象经过 A C 两点.

(1)求点 C 的坐标及反比例函数的解析式.

(2)直线 BC 与反比例函数图象的另一交点为 E ,求以 O C E 为顶点的三角形的面积.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A C 的坐标分别是 ( 4 , 6 ) ( 1 , 4 )

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出 ΔABC 关于 x 轴对称的△ A 1 B 1 C 1

(3)请在 y 轴上求作一点 P ,使△ P B 1 C 的周长最小,并写出点 P 的坐标.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的边 AB x 轴上,点 B 坐标 ( 3 , 0 ) ,点 C y 轴正半轴上,且 sin CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 t 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S

(1)求点 D 坐标.

(2)求 S 关于 t 的函数关系式.

(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B C Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

菱形 ABCD 在平面直角坐标系中的位置如图所示,对角线 AC BD 的交点 E 恰好在 y 轴上,过点 D BC 的中点 H 的直线交 AC 于点 F ,线段 DE CD 的长是方程 x 2 9 x + 18 = 0 的两根,请解答下列问题:

(1)求点 D 的坐标;

(2)若反比例函数 y = k x ( k 0 ) 的图象经过点 H ,则 k =   

(3)点 Q 在直线 BD 上,在直线 DH 上是否存在点 P ,使以点 F C P Q 为顶点的四边形是平行四边形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

定义:点 P ΔABC 内部或边上的点(顶点除外),在 ΔPAB ΔPBC ΔPCA 中,若至少有一个三角形与 ΔABC 相似,则称点 P ΔABC 的自相似点.

例如:如图1,点 P ΔABC 的内部, PBC = A BCP = ABC ,则 ΔBCP ΔABC ,故点 P ΔABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点 M 是曲线 y = 3 3 x ( x > 0 ) 上的任意一点,点 N x 轴正半轴上的任意一点.

(1)如图2,点 P OM 上一点, ONP = M ,试说明点 P ΔMON 的自相似点;当点 M 的坐标是 ( 3 3 ) ,点 N 的坐标是 ( 3 0 ) 时,求点 P 的坐标;

(2)如图3,当点 M 的坐标是 ( 3 , 3 ) ,点 N 的坐标是 ( 2 , 0 ) 时,求 ΔMON 的自相似点的坐标;

(3)是否存在点 M 和点 N ,使 ΔMON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC y 轴相交于点 E ,矩形 OABC 的边 OC OA 的长是关于 x 的一元二次方程 x 2 12 x + 32 = 0 的两个根, 且 OA > OC

(1) 求线段 OA OC 的长;

(2) 求证: ΔADE ΔCOE ,并求出线段 OE 的长;

(3) 直接写出点 D 的坐标;

(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E C P F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图1,已知矩形 AOCB AB = 6 cm BC = 16 cm ,动点 P 从点 A 出发,以 3 cm / s 的速度向点 O 运动,直到点 O 为止;动点 Q 同时从点 C 出发,以 2 cm / s 的速度向点 B 运动,与点 P 同时结束运动.

(1)点 P 到达终点 O 的运动时间是   s ,此时点 Q 的运动距离是   cm

(2)当运动时间为 2 s 时, P Q 两点的距离为   cm

(3)请你计算出发多久时,点 P 和点 Q 之间的距离是 10 cm

(4)如图2,以点 O 为坐标原点, OC 所在直线为 x 轴, OA 所在直线为 y 轴, 1 cm 长为单位长度建立平面直角坐标系,连接 AC ,与 PQ 相交于点 D ,若双曲线 y = k x 过点 D ,问 k 的值是否会变化?若会变化,说明理由;若不会变化,请求出 k 的值.

来源:2018年贵州省黔东南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边 AB x 轴上,点 A 的坐标为 ( 1 , 0 ) ,点 D ( 4 , 4 ) 在反比例函数 y = k x ( x > 0 ) 的图象上,直线 y = 2 3 x + b 经过点 C ,与 y 轴交于点 E ,连接 AC AE

(1)求 k b 的值;

(2)求 ΔACE 的面积.

来源:2019年广西贵港市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,在直角坐标系 xOy 中,矩形 OABC 的顶点 A C 分别在 x 轴和 y 轴正半轴上,点 B 的坐标是 ( 5 , 2 ) ,点 P CB 边上一动点(不与点 C 、点 B 重合),连接 OP AP ,过点 O 作射线 OE AP 的延长线于点 E ,交 CB 边于点 M ,且 AOP = COM ,令 CP = x MP = y

(1)当 x 为何值时, OP AP

(2)求 y x 的函数关系式,并写出 x 的取值范围;

(3)在点 P 的运动过程中,是否存在 x ,使 ΔOCM 的面积与 ΔABP 的面积之和等于 ΔEMP 的面积?若存在,请求 x 的值;若不存在,请说明理由.

来源:2016年四川省乐山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上. OAB 90 ° OA AB OBOC的长分别是一元二次方程 x 2 11 x + 30 0 的两个根 OB OC

(1)求点A和点B的坐标.

(2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t 4 时,直线l恰好过点C.当 0 t 3 时,求m关于t的函数关系式.

(3)当 m 3 . 5 时,请直接写出点P的坐标.

来源:2016年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,AN是⊙M的直径,NBx轴,AB交⊙M于点C

(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;

(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.

来源:2017年甘肃省临夏州中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学坐标与图形性质解答题