菱形 ABCD 在平面直角坐标系中的位置如图所示,对角线 AC 与 BD 的交点 E 恰好在 y 轴上,过点 D 和 BC 的中点 H 的直线交 AC 于点 F ,线段 DE , CD 的长是方程 x 2 − 9 x + 18 = 0 的两根,请解答下列问题:
(1)求点 D 的坐标;
(2)若反比例函数 y = k x ( k ≠ 0 ) 的图象经过点 H ,则 k = ;
(3)点 Q 在直线 BD 上,在直线 DH 上是否存在点 P ,使以点 F , C , P , Q 为顶点的四边形是平行四边形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.
(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN. 【类比探究】 (2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由. 【拓展延伸】 (3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
理解与应用 小明在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第37页遇到这样一道题: 如图1,在△ABC中,P是边AB上的一点,联结CP. 要使△ACP∽△ABC,还需要补充的一个条件是____________,或_________. 请回答: (1)小明补充的条件是____________________,或_________________. (2)请你参考上面的图形和结论,探究、解答下面的问题: 如图2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度数.
如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2). (1)求y关于x的函数关系式,并在右图中画出函数的图像; (2)求△PBQ面积的最大值.
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F. (1)求证:直线EF是⊙O的切线; (2)当直线DF与⊙O相切时,求⊙O的半径.
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C, (1)求证:CB//PD; (2)若AB=5,sin∠P=,求BC的长.