如图,在平面直角坐标系中,菱形 ABCD 的边 AB 在 x 轴上,点 B 坐标 ( − 3 , 0 ) ,点 C 在 y 轴正半轴上,且 sin ∠ CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 ⩽ t ⩽ 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S .
(1)求点 D 坐标.
(2)求 S 关于 t 的函数关系式.
(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B 、 C 、 Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.
已知:,,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧。(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小。
如图,在直角坐标系中,O为坐标原点,二次函数的图象与轴的正半轴交于点,与轴的正半轴交交于点,且.设此二次函数图象的顶点为。(1)求这个二次函数的解析式;(2)将绕点顺时针旋转后,点落到点的位置.将上述二次函数图象沿轴向上或向下平移后经过点.请直接写出点的坐标和平移后所得图象的函数解析式;(3)设(2)中平移后所得二次函数图象与轴的交点为,顶点为.点在平移后的二次函数图象上,且满足的面积是面积的倍,求点的坐标。
已知关于的方程有实根。(1)求的值;(2)若关于的方程的所有根均为整数,求整数的值。
如图①,△ABC,,∠ABC=,将△ABC绕点A顺时针旋转得△AB ¢C ¢,设旋转的角度是。(1)如图②,当= °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上;(2)如图③,连结BB ¢、CC ¢,CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 , 。 (不含全等三角形)。
已知:如图,在△ABC中,AB=AC= 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;(2)若CD=2,求BE的长。