▱ ABCO 在平面直角坐标系中的位置如图所示,直线 y 1 = kx + b 与双曲线 y 2 = m x ( m > 0 ) 在第一象限的图象相交于 A 、 E 两点,且 A ( 3 , 4 ) , E 是 BC 的中点.
(1)连接 OE ,若 ΔABE 的面积为 S 1 , ΔOCE 的面积为 S 2 ,则 S 1 = S 2 (直接填“ > ”“ < ”或“ = ” ) ;
(2)求 y 1 和 y 2 的解析式;
(3)请直接写出当 x 取何值时 y 1 > y 2 .
在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,每次试验先搅拌均匀. (1)若从中任取一球,球上的数字为偶数的概率是多少? (2)若设计一种游戏方案:从中任取一球(不放回),再从中任取一球,两球上的数字之和为偶数则甲胜,否则乙胜.该游戏对甲、乙双方公平吗?请说明理由.
下表为抄录体育官方票务网公布的三种球类比赛的部分门票价格,根据某公司购买的门票种类、数量绘制的统计图表如下:
400
如图,□中,AE:EB=2:3,DE交AC于点F. (1)求△AEF与△CDF的周长之比; (2)如果△CDF的面积为20cm2,求△AEF的面积.
△ABC在平面直角坐标系中的位置如图所示. (1)作关于点成中心对称的. (2)将向右平移4个单位,作出平移后的. (3)在轴上求作一点,使的值最小,并写出点的坐标(不写解答过程,直接写出结果).
如图,在△ ABC 中, AB =5, BC =3, AC =4,动点 E (与点 A , C 不重合)在 AC 边上, EF ∥ AB 交 BC 于 F 点. (1)当△ ECF 的面积与四边形 EABF 的面积相等时,求 CE 的长; (2)当△ ECF 的周长与四边形 EABF 的周长相等时,求 CE 的长; (3)试问在 AB 上是否存在点 P ,使得△ EFP 为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出 EF 的长.