如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上. ∠ OAB = 90 ° 且 OA = AB ,OB,OC的长分别是一元二次方程 x 2 ﹣ 11 x + 30 = 0 的两个根 ( OB > OC ) .
(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t = 4 时,直线l恰好过点C.当 0 < t < 3 时,求m关于t的函数关系式.
(3)当 m = 3 . 5 时,请直接写出点P的坐标.
(本小题满分7分)在平面直角坐标系中,过点向轴作垂线,垂足为,连接.双曲线经过斜边的中点,与边交于点. (1)求反比例函数的解析式; (2)求△的面积.
(本小题满分6分)年“植树节”前夕,某小区为绿化环境,购进棵柏树苗和棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的倍少元,每棵柏树苗的进价是多少元?
(本小题满分8分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α角到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF. (1)求证:BE=CD; (2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.
(本小题满分5分)解不等式组:
如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K. (1)求证:KE=GE; (2)若=KD·GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=,AK=,求FG的长.