初中数学

在平面直角坐标系中,点 O 为原点,点 A 的坐标为 ( 6 , 0 ) .如图1,正方形 OBCD 的顶点 B x 轴的负半轴上,点 C 在第二象限.现将正方形 OBCD 绕点 O 顺时针旋转角 α 得到正方形 OEFG

(1)如图2,若 α = 60 ° OE = OA ,求直线 EF 的函数表达式.

(2)若 α 为锐角, tan α = 1 2 ,当 AE 取得最小值时,求正方形 OEFG 的面积.

(3)当正方形 OEFG 的顶点 F 落在 y 轴上时,直线 AE 与直线 FG 相交于点 P ΔOEP 的其中两边之比能否为 2 : 1 ?若能,求点 P 的坐标;若不能,试说明理由

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 O 为坐标原点,点 B 的坐标为 ( 4 , 3 ) ,点 A C 在坐标轴上,点 P BC 边上,直线 l 1 : y = 2 x + 3 ,直线 l 2 : y = 2 x 3

(1)分别求直线 l 1 x 轴,直线 l 2 AB 的交点坐标;

(2)已知点 M 在第一象限,且是直线 l 2 上的点,若 ΔAPM 是等腰直角三角形,求点 M 的坐标;

(3)我们把直线 l 1 和直线 l 2 上的点所组成的图形为图形 F .已知矩形 ANPQ 的顶点 N 在图形 F 上, Q 是坐标平面内的点,且 N 点的横坐标为 x ,请直接写出 x 的取值范围(不用说明理由).

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

请阅读以下材料:已知向量 a = ( x 1 y 1 ) b = ( x 2 y 2 ) 满足下列条件:

| a | = x 1 2 + y 1 2 | b | = x 2 2 + y 2 2

a b = | a | × | b | cos α (角 α 的取值范围是 0 ° < α < 90 ° )

a b = x 1 x 2 + y 1 y 2

利用上述所给条件解答问题:

如:已知 a = ( 1 , 3 ) b = ( 3 3 ) ,求角 α 的大小;

解: | a | = x 1 2 + y 1 2 = 1 2 + ( 3 ) 2 = 2

b = x 2 2 + y 2 2 = ( 3 ) 2 + 3 2 = 12 = 2 3

a b = | a | × | b | cos α = 2 × 2 3 cos α = 4 3 cos α

a b = x 1 x 2 + y 1 y 2 = 1 × ( 3 ) + 3 × 3 = 2 3

4 3 cos α = 2 3

cos α = 1 2 α = 60 °

α 的值为 60 °

请仿照以上解答过程,完成下列问题:

已知 a = ( 1 , 0 ) b = ( 1 , 1 ) ,求角 α 的大小.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ABCO 在平面直角坐标系中的位置如图所示,直线 y 1 = kx + b 与双曲线 y 2 = m x ( m > 0 ) 在第一象限的图象相交于 A E 两点,且 A ( 3 , 4 ) E BC 的中点.

(1)连接 OE ,若 ΔABE 的面积为 S 1 ΔOCE 的面积为 S 2 ,则 S 1   =   S 2 (直接填“ > ”“ < ”或“ = )

(2)求 y 1 y 2 的解析式;

(3)请直接写出当 x 取何值时 y 1 > y 2

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,坐标原点 O 是菱形 ABCD 的对称中心.边 AB x 轴平行,点 B ( 1 , 2 ) ,反比例函数 y = k x ( k 0 ) 的图象经过 A C 两点.

(1)求点 C 的坐标及反比例函数的解析式.

(2)直线 BC 与反比例函数图象的另一交点为 E ,求以 O C E 为顶点的三角形的面积.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A C 的坐标分别是 ( 4 , 6 ) ( 1 , 4 )

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出 ΔABC 关于 x 轴对称的△ A 1 B 1 C 1

(3)请在 y 轴上求作一点 P ,使△ P B 1 C 的周长最小,并写出点 P 的坐标.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知平面图形 S ,点 P Q S 上任意两点,我们把线段 PQ 的长度的最大值称为平面图形 S 的“宽距”.例如,正方形的宽距等于它的对角线的长度.

(1)写出下列图形的宽距:

①半径为1的圆:       

②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:     

(2)如图2,在平面直角坐标系中,已知点 A ( - 1 , 0 ) B ( 1 , 0 ) C 是坐标平面内的点,连接 AB BC CA 所形成的图形为 S ,记 S 的宽距为 d

①若 d = 2 ,用直尺和圆规画出点 C 所在的区域并求它的面积(所在区域用阴影表示);

②若点 C M 上运动, M 的半径为1,圆心 M 在过点 ( 0 , 2 ) 且与 y 轴垂直的直线上.对于 M 上任意点 C ,都有 5 d 8 ,直接写出圆心 M 的横坐标 x 的取值范围.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,可通过构造直角三角形利用图1得到结论: P 1 P 2 = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 他还利用图2证明了线段 P 1 P 2 的中点 P ( x , y ) P 的坐标公式: x = x 1 + x 2 2 y = y 1 + y 2 2

(1)请你帮小明写出中点坐标公式的证明过程;

运用:(2)①已知点 M ( 2 , 1 ) N ( 3 , 5 ) ,则线段 MN 长度为  

②直接写出以点 A ( 2 , 2 ) B ( 2 , 0 ) C ( 3 , 1 ) D 为顶点的平行四边形顶点 D 的坐标:  

拓展:(3)如图3,点 P ( 2 , n ) 在函数 y = 4 3 x ( x 0 ) 的图象 OL x 轴正半轴夹角的平分线上,请在 OL x 轴上分别找出点 E F ,使 ΔPEF 的周长最小,简要叙述作图方法,并求出周长的最小值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的边 AB x 轴上,点 B 坐标 ( 3 , 0 ) ,点 C y 轴正半轴上,且 sin CBO = 4 5 ,点 P 从原点 O 出发,以每秒一个单位长度的速度沿 x 轴正方向移动,移动时间为 t ( 0 t 5 ) 秒,过点 P 作平行于 y 轴的直线 l ,直线 l 扫过四边形 OCDA 的面积为 S

(1)求点 D 坐标.

(2)求 S 关于 t 的函数关系式.

(3)在直线 l 移动过程中, l 上是否存在一点 Q ,使以 B C Q 为顶点的三角形是等腰直角三角形?若存在,直接写出 Q 点的坐标;若不存在,请说明理由.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

菱形 ABCD 在平面直角坐标系中的位置如图所示,对角线 AC BD 的交点 E 恰好在 y 轴上,过点 D BC 的中点 H 的直线交 AC 于点 F ,线段 DE CD 的长是方程 x 2 9 x + 18 = 0 的两根,请解答下列问题:

(1)求点 D 的坐标;

(2)若反比例函数 y = k x ( k 0 ) 的图象经过点 H ,则 k =   

(3)点 Q 在直线 BD 上,在直线 DH 上是否存在点 P ,使以点 F C P Q 为顶点的四边形是平行四边形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.

探究一:求不等式 | x 1 | < 2 的解集

(1)探究 | x 1 | 的几何意义

如图①,在以 O 为原点的数轴上,设点 A ' 对应的数是 x 1 ,由绝对值的定义可知,点 A ' 与点 O 的距离为 | x 1 | ,可记为 A ' O = | x 1 | .将线段 A ' O 向右平移1个单位得到线段 AB ,此时点 A 对应的数是 x ,点 B 对应的数是1.因为 AB = A ' O ,所以 AB = | x 1 | .因此, | x 1 | 的几何意义可以理解为数轴上 x 所对应的点 A 与1所对应的点 B 之间的距离 AB

(2)求方程 | x 1 | = 2 的解

因为数轴上3和 1 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, 1

(3)求不等式 | x 1 | < 2 的解集

因为 | x 1 | 表示数轴上 x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 x 的范围.

请在图②的数轴上表示 | x 1 | < 2 的解集,并写出这个解集.

探究二:探究 ( x a ) 2 + ( y b ) 2 的几何意义

(1)探究 x 2 + y 2 的几何意义

如图③,在直角坐标系中,设点 M 的坐标为 ( x , y ) ,过 M MP x 轴于 P ,作 MQ y 轴于 Q ,则 P 点坐标为 ( x , 0 ) Q 点坐标为 ( 0 , y ) OP = | x | OQ = | y | ,在 Rt Δ OPM 中, PM = OQ = | y | ,则 MO = O P 2 + P M 2 = | x | 2 + | y | 2 = x 2 + y 2 ,因此, x 2 + y 2 的几何意义可以理解为点 M ( x , y ) 与点 O ( 0 , 0 ) 之间的距离 MO

(2)探究 ( x 1 ) 2 + ( y 5 ) 2 的几何意义

如图④,在直角坐标系中,设点 A ' 的坐标为 ( x 1 , y 5 ) ,由探究二(1)可知, A ' O = ( x 1 ) 2 + ( y 5 ) 2 ,将线段 A ' O 先向右平移1个单位,再向上平移5个单位,得到线段 AB ,此时点 A 的坐标为 ( x , y ) ,点 B 的坐标为 ( 1 , 5 ) ,因为 AB = A ' O ,所以 AB = ( x 1 ) 2 + ( y 5 ) 2 ,因此 ( x 1 ) 2 + ( y 5 ) 2 的几何意义可以理解为点 A ( x , y ) 与点 B ( 1 , 5 ) 之间的距离 AB

(3)探究 ( x + 3 ) 2 + ( y 4 ) 2 的几何意义

请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.

(4) ( x a ) 2 + ( y b ) 2 的几何意义可以理解为:  

拓展应用:

(1) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的几何意义可以理解为:点 A ( x , y ) 与点 E ( 2 , 1 ) 的距离和点 A ( x , y ) 与点 F   (填写坐标)的距离之和.

(2) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的最小值为  (直接写出结果)

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

定义:点 P ΔABC 内部或边上的点(顶点除外),在 ΔPAB ΔPBC ΔPCA 中,若至少有一个三角形与 ΔABC 相似,则称点 P ΔABC 的自相似点.

例如:如图1,点 P ΔABC 的内部, PBC = A BCP = ABC ,则 ΔBCP ΔABC ,故点 P ΔABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点 M 是曲线 y = 3 3 x ( x > 0 ) 上的任意一点,点 N x 轴正半轴上的任意一点.

(1)如图2,点 P OM 上一点, ONP = M ,试说明点 P ΔMON 的自相似点;当点 M 的坐标是 ( 3 3 ) ,点 N 的坐标是 ( 3 0 ) 时,求点 P 的坐标;

(2)如图3,当点 M 的坐标是 ( 3 , 3 ) ,点 N 的坐标是 ( 2 , 0 ) 时,求 ΔMON 的自相似点的坐标;

(3)是否存在点 M 和点 N ,使 ΔMON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

在下面的网格中,每个小正方形的边长均为1, ΔABC 的三个顶点都是网格线的交点,已知 B C 两点的坐标分别为 ( 3 , 0 ) ( 1 , 1 )

(1)请在图中画出平面直角坐标系,并直接写出点 A 的坐标.

(2)将 ΔABC 绕着坐标原点顺时针旋转 90 ° ,画出旋转后的△ A ' B ' C '

(3)接写出在上述旋转过程中,点 A 所经过的路径长.

来源:2019年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC y 轴相交于点 E ,矩形 OABC 的边 OC OA 的长是关于 x 的一元二次方程 x 2 12 x + 32 = 0 的两个根, 且 OA > OC

(1) 求线段 OA OC 的长;

(2) 求证: ΔADE ΔCOE ,并求出线段 OE 的长;

(3) 直接写出点 D 的坐标;

(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E C P F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学平面直角坐标系解答题