在平面直角坐标系中,点 为原点,点 的坐标为 .如图1,正方形 的顶点 在 轴的负半轴上,点 在第二象限.现将正方形 绕点 顺时针旋转角 得到正方形 .
(1)如图2,若 , ,求直线 的函数表达式.
(2)若 为锐角, ,当 取得最小值时,求正方形 的面积.
(3)当正方形 的顶点 落在 轴上时,直线 与直线 相交于点 , 的其中两边之比能否为 ?若能,求点 的坐标;若不能,试说明理由
如图,在矩形 中,点 为坐标原点,点 的坐标为 ,点 、 在坐标轴上,点 在 边上,直线 ,直线 .
(1)分别求直线 与 轴,直线 与 的交点坐标;
(2)已知点 在第一象限,且是直线 上的点,若 是等腰直角三角形,求点 的坐标;
(3)我们把直线 和直线 上的点所组成的图形为图形 .已知矩形 的顶点 在图形 上, 是坐标平面内的点,且 点的横坐标为 ,请直接写出 的取值范围(不用说明理由).
请阅读以下材料:已知向量 , , , 满足下列条件:
① ,
② (角 的取值范围是 ;
③
利用上述所给条件解答问题:
如:已知 , , ,求角 的大小;
解: ,
又
,
角 的值为 .
请仿照以上解答过程,完成下列问题:
已知 , ,求角 的大小.
在平面直角坐标系中的位置如图所示,直线 与双曲线 在第一象限的图象相交于 、 两点,且 , 是 的中点.
(1)连接 ,若 的面积为 , 的面积为 ,则 (直接填“ ”“ ”或“ ” ;
(2)求 和 的解析式;
(3)请直接写出当 取何值时 .
如图,在平面直角坐标系中,坐标原点 是菱形 的对称中心.边 与 轴平行,点 ,反比例函数 的图象经过 , 两点.
(1)求点 的坐标及反比例函数的解析式.
(2)直线 与反比例函数图象的另一交点为 ,求以 , , 为顶点的三角形的面积.
在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 (顶点是网格线交点的三角形)的顶点 、 的坐标分别是 , .
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出 关于 轴对称的△ ;
(3)请在 轴上求作一点 ,使△ 的周长最小,并写出点 的坐标.
已知平面图形 ,点 、 是 上任意两点,我们把线段 的长度的最大值称为平面图形 的“宽距”.例如,正方形的宽距等于它的对角线的长度.
(1)写出下列图形的宽距:
①半径为1的圆: ;
②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ;
(2)如图2,在平面直角坐标系中,已知点 、 , 是坐标平面内的点,连接 、 、 所形成的图形为 ,记 的宽距为 .
①若 ,用直尺和圆规画出点 所在的区域并求它的面积(所在区域用阴影表示);
②若点 在 上运动, 的半径为1,圆心 在过点 且与 轴垂直的直线上.对于 上任意点 ,都有 ,直接写出圆心 的横坐标 的取值范围.
探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 , , , ,可通过构造直角三角形利用图1得到结论: 他还利用图2证明了线段 的中点 的坐标公式: , .
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点 , ,则线段 长度为 ;
②直接写出以点 , , , 为顶点的平行四边形顶点 的坐标: ;
拓展:(3)如图3,点 在函数 的图象 与 轴正半轴夹角的平分线上,请在 、 轴上分别找出点 、 ,使 的周长最小,简要叙述作图方法,并求出周长的最小值.
如图,在平面直角坐标系中,菱形 的边 在 轴上,点 坐标 ,点 在 轴正半轴上,且 ,点 从原点 出发,以每秒一个单位长度的速度沿 轴正方向移动,移动时间为 秒,过点 作平行于 轴的直线 ,直线 扫过四边形 的面积为 .
(1)求点 坐标.
(2)求 关于 的函数关系式.
(3)在直线 移动过程中, 上是否存在一点 ,使以 、 、 为顶点的三角形是等腰直角三角形?若存在,直接写出 点的坐标;若不存在,请说明理由.
菱形 在平面直角坐标系中的位置如图所示,对角线 与 的交点 恰好在 轴上,过点 和 的中点 的直线交 于点 ,线段 , 的长是方程 的两根,请解答下列问题:
(1)求点 的坐标;
(2)若反比例函数 的图象经过点 ,则 ;
(3)点 在直线 上,在直线 上是否存在点 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
已知:在平面直角坐标系中,点 为坐标原点,点 在 轴的负半轴上,直线 与 轴、 轴分别交于 、 两点,四边形 为菱形.
(1)如图1,求点 的坐标;
(2)如图2,连接 ,点 为 内一点,连接 、 , 与 交于点 ,且 ,点 在线段 上,点 在线段 上,且 ,连接 、 ,若 ,求 的值;
(3)如图3,在(2)的条件下,当 时,求点 的坐标.
数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
探究一:求不等式 的解集
(1)探究 的几何意义
如图①,在以 为原点的数轴上,设点 对应的数是 ,由绝对值的定义可知,点 与点 的距离为 ,可记为 .将线段 向右平移1个单位得到线段 ,此时点 对应的数是 ,点 对应的数是1.因为 ,所以 .因此, 的几何意义可以理解为数轴上 所对应的点 与1所对应的点 之间的距离 .
(2)求方程 的解
因为数轴上3和 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, .
(3)求不等式 的解集
因为 表示数轴上 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 的范围.
请在图②的数轴上表示 的解集,并写出这个解集.
探究二:探究 的几何意义
(1)探究 的几何意义
如图③,在直角坐标系中,设点 的坐标为 ,过 作 轴于 ,作 轴于 ,则 点坐标为 , 点坐标为 , , ,在 中, ,则 ,因此, 的几何意义可以理解为点 与点 之间的距离 .
(2)探究 的几何意义
如图④,在直角坐标系中,设点 的坐标为 ,由探究二(1)可知, ,将线段 先向右平移1个单位,再向上平移5个单位,得到线段 ,此时点 的坐标为 ,点 的坐标为 ,因为 ,所以 ,因此 的几何意义可以理解为点 与点 之间的距离 .
(3)探究 的几何意义
请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.
(4) 的几何意义可以理解为: .
拓展应用:
(1) 的几何意义可以理解为:点 与点 的距离和点 与点 (填写坐标)的距离之和.
(2) 的最小值为 (直接写出结果)
定义:点 是 内部或边上的点(顶点除外),在 , , 中,若至少有一个三角形与 相似,则称点 是 的自相似点.
例如:如图1,点 在 的内部, , ,则 ,故点 是 的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点 是曲线 上的任意一点,点 是 轴正半轴上的任意一点.
(1)如图2,点 是 上一点, ,试说明点 是 的自相似点;当点 的坐标是 , ,点 的坐标是 , 时,求点 的坐标;
(2)如图3,当点 的坐标是 ,点 的坐标是 时,求 的自相似点的坐标;
(3)是否存在点 和点 ,使 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
在下面的网格中,每个小正方形的边长均为1, 的三个顶点都是网格线的交点,已知 , 两点的坐标分别为 , .
(1)请在图中画出平面直角坐标系,并直接写出点 的坐标.
(2)将 绕着坐标原点顺时针旋转 ,画出旋转后的△ .
(3)接写出在上述旋转过程中,点 所经过的路径长.