在下面的网格中,每个小正方形的边长均为1, ΔABC 的三个顶点都是网格线的交点,已知 B , C 两点的坐标分别为 ( − 3 , 0 ) , ( − 1 , − 1 ) .
(1)请在图中画出平面直角坐标系,并直接写出点 A 的坐标.
(2)将 ΔABC 绕着坐标原点顺时针旋转 90 ° ,画出旋转后的△ A ' B ' C ' .
(3)接写出在上述旋转过程中,点 A 所经过的路径长.
一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球. (1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果; (2)求两次摸出的球上的数字和为偶数的概率.
如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F. (1)证明:FD=AB; (2)当平行四边形ABCD的面积为8时,求△FED的面积.
如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE. (1)求;(直接写出结果) (2)当AB=3,AC=5时,求的周长.
已知反比例函数的图象经过点M(2,1). (1)求该函数的表达式; (2)当时,求的取值范围.(直接写出结果)
如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1. (1)求抛物线的解析式; (2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标; (3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.