初中数学

已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0

(1)求证:无论 k 取何值,方程都有两个不相等的实数根.

(2)如果方程的两个实数根为 x 1 x 2 ,且 k x 1 x 2 都为整数,求 k 所有可能的值.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + x - m = 0

(1)若方程有两个不相等的实数根,求 m 的取值范围;

(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.

(1)设矩形的相邻两边长分别为 x y

①求 y 关于 x 的函数表达式;

②当 y 3 时,求 x 的取值范围;

(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 2 x + a = 0 的两实数根 x 1 x 2 满足 x 1 x 2 + x 1 + x 2 > 0 ,求 a 的取值范围.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 ( 2 m 2 ) x + ( m 2 2 m ) = 0

(1)求证:方程有两个不相等的实数根.

(2)如果方程的两实数根为 x 1 x 2 ,且 x 1 2 + x 2 2 = 10 ,求 m 的值.

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 m x 2 + ( 1 5 m ) x 5 = 0 ( m 0 )

(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;

(2)若抛物线 y = m x 2 + ( 1 5 m ) x 5 x 轴交于 A ( x 1 0 ) B ( x 2 0 ) 两点,且 | x 1 x 2 | = 6 ,求 m 的值;

(3)若 m > 0 ,点 P ( a , b ) Q ( a + n , b ) 在(2)中的抛物线上(点 P Q 不重合),求代数式 4 a 2 n 2 + 8 n 的值.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 ( m 3 ) x m = 0

(1)求证:方程有两个不相等的实数根;

(2)如果方程的两实根为 x 1 x 2 ,且 x 1 2 + x 2 2 x 1 x 2 = 7 ,求 m 的值.

来源:2017年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,一次函数 y 1 = ax + b 与反比例函数 y 2 = 4 x 的图象交于 A B 两点.点 A 的横坐标为2,点 B 的纵坐标为1.

(1)求 a b 的值.

(2)在反比例 y 2 = 4 x 第三象限的图象上找一点 P ,使点 P 到直线 AB 的距离最短,求点 P 的坐标.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 5 x + 2 m = 0 有实数根.

(1)求 m 的取值范围;

(2)当 m = 5 2 时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

关于 x 的方程 2 x 2 5 x sin A + 2 = 0 有两个相等的实数根,其中 A 是锐角三角形 ABC 的一个内角.

(1)求 sin A 的值;

(2)若关于 y 的方程 y 2 10 y + k 2 4 k + 29 = 0 的两个根恰好是 ΔABC 的两边长,求 ΔABC 的周长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程: x 2 ( t 1 ) x + t 2 = 0

(1)求证:对于任意实数 t ,方程都有实数根;

(2)当 t 为何值时,方程的两个根互为相反数?请说明理由.

来源:2017年广西玉林市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程: x 2 2 x k 2 = 0 有两个不相等的实数根.

(1)求 k 的取值范围;

(2)给 k 取一个负整数值,解这个方程.

来源:2018年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

我们规定:若 m = ( a , b ) n = ( c , d ) ,则 m · n = ac + bd .如 m = ( 1 , 2 ) n = ( 3 , 5 ) ,则 m · n = 1 × 3 + 2 × 5 = 13

(1)已知 m = ( 2 , 4 ) n = ( 2 , 3 ) ,求 m · n

(2)已知 m = ( x a , 1 ) n = ( x a , x + 1 ) ,求 y = m · n ,问 y = m · n 的函数图象与一次函数 y = x 1 的图象是否相交,请说明理由.

来源:2016年四川省雅安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 6 x + ( 2 m + 1 ) = 0 有实数根.

(1)求 m 的取值范围;

(2)如果方程的两个实数根为 x 1 x 2 ,且 2 x 1 x 2 + x 1 + x 2 20 ,求 m 的取值范围.

来源:2016年四川省南充市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知关于x的方程 x 2 ﹣( 2 m + 1 x + m m + 1 )= 0

(1)求证:方程总有两个不相等的实数根;

(2)已知方程的一个根为 x 0 ,求代数式 2 m 1 2 + 3 + m )( 3 m + 7 m 5 的值(要求先化简再求值).

来源:2016年湖南省岳阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

初中数学根的判别式解答题