已知关于 x的一元二次方程: x2−2x−k−2=0有两个不相等的实数根.
(1)求 k的取值范围;
(2)给 k取一个负整数值,解这个方程.
已知:Rt△OAB在直角坐标系中的位置如图所示,P(3,4)为OB的中点,点C为折线OAB上的动点,线段PC把Rt△OAB分割成两部分. 问:点C在什么位置时,分割得到的三角形与Rt△OAB相似?(注:在图上画出所有符合要求的线段PC,并写出相应的点C的坐标).
如图在平面直角坐标系内,以点C(1,1)为圆心,2为半径作圆,交x轴于A、B两点,开口向下的抛物线经过A、B两点,且其顶点P在⊙C上。(1)写出A、B两点的坐标;(2)确定此抛物线的解析式;
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件。(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C.(1)点A的坐标为 点B的坐标为 ,点C的坐标为 ;(2)设抛物线y=x2-2x-3的顶点坐标为M,求四边形ABMC的面积.
如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.