已知关于 x 的一元二次方程 x 2 − 2 x + a = 0 的两实数根 x 1 , x 2 满足 x 1 x 2 + x 1 + x 2 > 0 ,求 a 的取值范围.
D、E分别是△ABC的边AB、AC的中点.O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G. (1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形; (2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在画2中补全图形,并说明理由.
如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度. (1)求直线AB的函数关系式; (2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标; (3)在运动过程中,当P、Q的距离为2时,求点P的坐标.
如图,在菱形ABCD中,点E是AB的中点,且DE⊥AB. (1)求∠ABD的度数; (2)若菱形的边长为2,求菱形的面积.
某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题: (1)频数、频率分布表中,; (2)补全频数分布直方图; (3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是_________.
△ABC在平面直角坐标系xOy中的位置如图所示. (1)作△ABC关于点C成中心对称的△A1B1C1; (2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2; (3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为______.