高中数学

求值:(1)                 
(2)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,解关于的不等式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

解关于x的不等式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

中,内角对边分别是,已知(1)(1)求的面积的最大值;
(2)若,求的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在数列中,
(1)求数列的通项公式;
(2)令,求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

给定椭圆>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;
(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)
已知函数的最大值为,最小值为
(Ⅰ)求的最小正周期;
(Ⅱ)求的单调递增区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)求函数的最小正周期及单调递增区间;   
(2)的内角的对边长分别为,若 且试判断的形状,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

19.(本小题满分12分)
如图,四棱锥的底面为菱形,平面
分别为的中点,
(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,已知分别是椭圆)的左、右焦点,且椭圆的离心率也是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆两点,
,点关于轴的对称点为,求直线的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数为正常数.  
(Ⅰ)若,且,求函数的单调增区间;  (Ⅱ) 若,且对任意,都有,求的的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:
直线与曲线分别交于
(Ⅰ)写出曲线和直线的普通方程;   (Ⅱ)若成等比数列,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4—5:不等式选讲
已知函数      (Ⅰ)求不等式的解集;
(Ⅱ)若关于x的不等式的解集非空,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知△ABC的面积S满足
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数的最大值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40°
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE
(3)求二面角F—BD—A的大小。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题