给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;
(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.
(本小题满分12分)已知函数.
(1)求函数的最小正周期及单调递增区间;
(2)的内角的对边长分别为,若 且试判断的形状,并说明理由.
19.(本小题满分12分)
如图,四棱锥的底面为菱形,平面,
,分别为的中点,.
(Ⅰ)求证:平面平面.
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分)
如图,已知,分别是椭圆:()的左、右焦点,且椭圆的离心率,也是抛物线:的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于,两点,
且,点关于轴的对称点为,求直线的方程.
(本小题满分12分)
已知函数,为正常数.
(Ⅰ)若,且,求函数的单调增区间; (Ⅱ) 若,且对任意,,都有,求的的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:,
直线与曲线分别交于.
(Ⅰ)写出曲线和直线的普通方程; (Ⅱ)若成等比数列,求的值.
(本小题满分10分)选修4—5:不等式选讲
已知函数 (Ⅰ)求不等式的解集;
(Ⅱ)若关于x的不等式的解集非空,求实数的取值范围.