高中数学

在直角坐标系 xOy 中,曲线 C 1 的方程为 y = k x + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ 2 + 2 ρ cos θ - 3 = 0 .

(1)求 C 2 的直角坐标方程;

(2)若 C 1 C 2 有且仅有三个公共点,求 C 1 的方程.

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = 1 x - x + a ln x

(1)讨论 f ( x ) 的单调性;

(2)若 f ( x ) 存在两个极值点 x 1 , x 2 ,证明: f x 1 - f x 2 x 1 - x 2 < a - 2

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 20 件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 p ( 0 < p < 1 ) ,且各件产品是否为不合格品相互独立.

(1)记 20 件产品中恰有 2 件不合格品的概率为 f ( p ) ,求 f ( p ) 的最大值点 p 0

(2)现对一箱产品检验了 20 件,结果恰有 2 件不合格品,以(1)中确定的 p 0 作为 p 的值.已知每件产品的检验费用为 2 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 25 元的赔偿费用.

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 X ,求 EX ;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

设椭圆 C : x 2 2 + y 2 = 1 的右焦点为 F ,过 F 的直线 l C 交于 A , B 两点,点 M 的坐标为 ( 2 , 0 ) .

(1)当 l x 轴垂直时,求直线 AM 的方程;

(2)设 O 为坐标原点,证明: OMA = OMB .

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把 折起,使点 C 到达点 P 的位置,且 PF BF .

(1)证明:平面 PEF 平面 ABFD

(2)求 DP 与平面 ABFD 所成角的正弦值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

在平面四边形 ABCD 中, ADC = 9 0 A = 4 5 AB = 2 BD = 5 .

(1)求 cos ADB

(2)若 DC = 2 2 ,求 BC .

来源:2018年全国统一高考理科数学试卷(新课标Ⅰ)
  • 更新:2021-09-01
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中,曲线 C 的参数方程为 x = 2 cosθ y = 4 sinθ θ 为参数),直线 l 的参数方程为 x = 1 + tcosα y = 2 + tsinα t 为参数).

(1)求 C l 的直角坐标方程;

(2)若曲线 C 截直线 l 所得线段的中点坐标为 1 , 2 ,求 l 的斜率.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知函数 f x = e x - a x 2

(1)若 a = 1 ,证明:当 x 0 时, f x 1

(2)若 f x 只有一个零点,求 a 的值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

如图,在三棱锥 P - ABC 中, AB = BC = 2 2 PA = PB = PC = AC = 4 O AC 的中点.

(1)证明: PO 平面 ABC

(2)若点 M 在棱 BC 上,且二面角 M - PA - C 30 ° ,求 PC 与平面 PAM 所成角的正弦值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

设抛物线 C    y 2 = 4 x 的焦点为 F ,过 F 且斜率为 k ( k > 0 ) 的直线 l C 交于 A B 两点, | AB | = 8

(1)求 l 的方程;

(2)求过点 A B 且与 C 的准线相切的圆的方程.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.

   为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

S n 为等差数列 { a n } 的前 n 项和,已知

(1)求 { a n } 的通项公式;

(2)求 S n ,并求 S n 的最小值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中, O 的参数方程为 x = cos θ y = sin θ θ 为参数),过点 0 - 2 且倾斜角为 α 的直线 l O 交于 A B 两点.

(1)求 α 的取值范围;

(2)求 AB 中点 P 的轨迹的参数方程.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

如图,边长为2的正方形 ABCD 所在的平面与半圆弧 CD 所在平面垂直, M CD 上异于 C D 的点.

(1)证明:平面 AMD 平面 BMC

(2)当三棱锥 M - ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:

超过 m

不超过 m

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附: K 2 = n ad - bc 2 a + b c + d a + c b + d

来源:2018年全国统一高考理科数学试卷(新课标Ⅲ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

高中数学解答题