设抛物线 C : y 2 = 4 x 的焦点为 F ,过 F 且斜率为 k ( k > 0 ) 的直线 l 与 C 交于 A , B 两点, | AB | = 8 .
(1)求 l 的方程;
(2)求过点 A , B 且与 C 的准线相切的圆的方程.
已知数列满足 (Ⅰ) 判断并证明函数f(x)的单调性; (Ⅱ) 设数列满足
已知函数为偶函数,且其图象上相邻两个最大值点之间的距离为。 (1)求函数的表达式。(2)若,求的值。
某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.
已知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,M是椭圆上的任意点,|MF|的最大值和最小值的几何平均数为2,椭圆上存在着以y=x为轴的对称点M1和M2,且|M1M2|=,试求椭圆的方程
二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?