如图,在三棱锥 P - ABC 中, AB = BC = 2 2 , PA = PB = PC = AC = 4 , O 为 AC 的中点.
(1)证明: PO ⊥ 平面 ABC ;
(2)若点 M 在棱 BC 上,且二面角 M - PA - C 为 30 ° ,求 PC 与平面 PAM 所成角的正弦值.
计算题 (1)求值: (2)求不等式的解集:①②
设集合U=R,; (1)求:,; (2)设集合,若,求a的取值范围.
已知tanα是关于x的方程的一个实根,且α是第三象限角. (1)求的值; (2)求的值.
如图在直三棱柱中已知AB=BC=1,,,D是上的点,且 (1)求AD与C1B1所成的角的大小; (2)求二面角的余弦值.
已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为. (1)求的顶点、的坐标; (2)若圆经过不同的三点、、,且斜率为的直线与圆相切于点,求圆的方程.