设椭圆 C : x 2 2 + y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A , B 两点,点 M 的坐标为 ( 2 , 0 ) .
(1)当 l 与 x 轴垂直时,求直线 AM 的方程;
(2)设 O 为坐标原点,证明: ∠ OMA = ∠ OMB .
,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(Ⅰ)补全频率分布直方图并求、、的值;(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.
(本小题满分14分)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=+2a+,x∈,其中a是与气象有关的参数,且a∈,若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).(1)令t=,x∈,求t的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过 (1)求出列联表中数据的值; (2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义; (3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。 参考公式: 参考数据:
近期世界各国军事演习频繁,某国一次军事演习中,空军同时出动了甲、乙、丙三架不同型号的战斗机对一目标进行轰炸,已知甲击中目标的概率是;甲、丙同时轰炸一次,目标未被击中的概率是;乙、丙同时轰炸一次都击中目标的概率是.(Ⅰ)求乙、丙各自击中目标的概率.(Ⅱ)求目标被击中的概率.
(本小题满分12分)在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(Ⅰ)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(Ⅱ)设直线与圆交于不同的两点,且,求圆的方程;(Ⅲ)设直线与(Ⅱ)中所求圆交于点、, 为直线上的动点,直线,与圆的另一个交点分别为,,求证:直线过定点.