如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以 DF 为折痕把 折起,使点 C 到达点 P 的位置,且 PF ⊥ BF .
(1)证明:平面 PEF ⊥ 平面 ABFD ;
(2)求 DP 与平面 ABFD 所成角的正弦值.
如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,.(Ⅰ)求证:直线EA⊥平面PAB;(Ⅱ)求直线AE与平面PCD所成角的正切值.
已知圆C的圆心在坐标原点,且被直线3x+4y+15=0截得的弦长为8 (Ⅰ)试求圆C的方程;(Ⅱ)当P在圆C上运动时,点D是P在x轴上的投影,M为线段PD上一点,且|MD|=|PD|.求点M的轨迹方程;
命题实数x满足(其中),命题(Ⅰ)若,且为真,求实数的取值范围;(Ⅱ)若q是p的充分不必要条件,求实数a的取值范围.
(本小题14分)已知函数f(x)=ax3++bx(a,b为常数)1) 若y=f(x)的图象在x=2处的切线方程为x-y+6=0,求函数y=f(x)的解析式;2) 在1)的条件下,讨论函数y=f(x)的图象与函数y =-[f /(x)-9x-3]+m的图象的交点的个数;3) 当a=1时,,lnx ≤f /(x)恒成立,求实数b的取值范围。
(本小题12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2 =y的焦点。1)求椭圆C的方程;2)点P(2,3),Q(2,-3)在椭圆上,A、B是椭圆上位于直线PQ两侧的动点。(1)若直线AB的斜率为,求四边形APBQ的面积的最大值;(2)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由;