(本小题满分12分)已知定义在区间上的函数为奇函数且(1)求实数m,n的值;(2)求证:函数上是增函数。(3)若恒成立,求t的最小值。
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。(I)求证:BF⊥平面DAF;(II)求多面体ABCDFE的体积。
已知函数(I)若的最大值和最小值;(II)若的值。
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:
(I)在下图中补齐频率分布直方图;(II)估计元件寿命在500800h以内的概率。
在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
已知函数. (Ⅰ)求的最小值;(Ⅱ)若对所有都有,求实数的取值范围.