如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变. (1)建立适当的平面直角坐标系,求曲线C的方程;(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.
从集合的所有非空子集中,等可能地取出一个. ①记性质:集合中的所有元素之和为10,求所取出的非空子集满足性质的概率;②记所取出的非空子集的元素个数为,求的分布列和数学期望.
在中,角的对边分别为,且.①求角的大小;②求的取值范围.
已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程; (2)设直线与椭圆相交于两点,分别为线段的中点.若坐标原点在以为直径的圆上,且,求的取值范围.
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若,求点的坐标;(2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标.
双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.(1)求双曲线的方程;(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于两点,求时,直线的方程.