如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变. (1)建立适当的平面直角坐标系,求曲线C的方程;(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.
已知椭圆方程为斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。 (1)求m的取值范围; (2)求△OPQ面积的取值范围。
如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。 (1)求证:EF⊥平面PAB; (2)求三棱锥P-AEF的体积
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2, 3,4. (1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率; (2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.
设数列的前项和为,已知 (1)求数列的通项公式; (2)若,求数列的前项和
设正有理数是的一个近似值,令. (Ⅰ)若,求证:; (Ⅱ)比较与哪一个更接近于?