(本小题满分13)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。(I)求该选手进入第三轮才被淘汰的概率;(II)求该选手至多进入第三轮考核的概率;(III)该选手在选拔过程中回答过的问题的个数记为,求随机变量的分布列和期望。
(本小题满分12分)已知△ABC中,角A,B,C的对边分别为a,b,c,且b=c,sinA•cosC=3sinC•cosA.(Ⅰ)若△ABC的面积S=sinA,求c;(Ⅱ)求的值.
(本小题满分12分)设向量=(3,1),=(-1,2),向量垂直于向量,向量平行于,试求时,的坐标.
(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,的部分图像如下图所示:(Ⅰ)求函数f(x)的解析式;(Ⅱ)写出函数f(x)的递增区间.
(本小题14分)已知函数在处取得极值。(Ⅰ)求函数的解析式;(Ⅱ)求证:对于区间上任意两个自变量的值,都有;(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。
(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.