(本小题满分12分)设向量=(3,1),=(-1,2),向量垂直于向量,向量平行于,试求时,的坐标.
已知数列为等差数列,,其前和为,数列为等比数列,且对任意的恒成立. (1)求数列、的通项公式; (2)是否存在,使得成立,若存在,求出所有满足条件的;若不存在,说明理由.
如图,四棱锥P-ABCD中,底面为菱形,且,. (Ⅰ)求证:; (Ⅱ)若,求二面角的余弦值。
在△ABC中,分别为角A、B、C的对边,若=(,),,且. (1)求角A的度数; (2)当,且△ABC的面积时,求边的值和△ABC的面积。
选修4-5不等式证明选讲 已知函数,且满足的解集不是空集. (1)求实数的取值范围; (2)求的最小值.
选修4-4极坐标与参数方程 已知曲线的极坐标方程为,曲线(为参数). (1)求曲线的普通方程; (2)若点在曲线上运动,试求出到曲线的距离的最小值.