已知抛物线C:y2=4x.(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;(2)若M(m,0)是x轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由.
(本小题满分12分)数列上,(I)求数列的通项公式;(II)若
如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB(1)求证:PO⊥面ABCE;(2)求AC与面PAB所成角的正弦值.
(本小题满分12分)某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设(Ⅰ)求他们选择的项目所属工程类别相同的概率;(Ⅱ)记为3人中选择的项目属于B类工程或C类工程的人数,求的分布列及数学期望.
(本小题满分12分)已知函数>0,>0,<的图象与 轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为 和(1)写出的解析式及的值;(2)若锐角满足,求的值.
(本小题满分10分)选修4-5:不等式选讲 已知对于任意非零实数,不等式恒成立,求实数的取值范围。