在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点.
已知椭圆的两个焦点是与,点是椭圆外的动点,满足.点是线段与该椭圆的交点,点在线段上,并且满足. (Ⅰ)设为点的横坐标,证明; (Ⅱ)求点的轨迹的方程; (Ⅲ)试问:在点的轨迹上,是否存在点,使的面积为?若存在,求的正切值;若不存在,请说明理由.
已知函数在上为增函数,且,. (Ⅰ)求的值; (Ⅱ)若在上为单调函数,求的取值范围; (Ⅲ)设,若在上至少存在一个,使得成立,求的取值范围.
在长方体中, , 点是的中点,点是的中点. (Ⅰ)求证: 平面; (Ⅱ)求异面直线和所成的角余弦值; (Ⅲ)过三点的平面把长方体截成 两部分几何体, 求所截成的两部分几何体的体积的比值.
设函数的定义域为. (I),求使的概率; (II),求使的概率.
已知△的周长为,且. (1)求边长的值; (2)若,求的正切值.