数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).(I)求数列{an}的通项公式及的值;(Ⅱ)比较+++ +与Sn的大小.
在△ABC中,角A、B 、C满足,求角B的度数.
已知,并且,,求的值.
已知,分别是方程的两实根,求的值.
已知函数, (1)求的定义域; (2)若角a在第一象限且求.
如图,已知圆O:x2+y2=2交x轴于A,B两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为的椭圆,点F为其右焦点. 过原点O作直线PF的垂线交椭圆C的右准线l于点Q. (1)求椭圆C的标准方程;(2)证明:直线PQ与圆O相切.