(本小题满分14分)设函数的图象与x轴相交于一点,且在点处的切线方程是(I)求t的值及函数的解析式;(II)设函数(1)若的极值存在,求实数m的取值范围。(2)假设有两个极值点的表达式并判断是否有最大值,若有最大值求出它;若没有最大值,说明理由。
已知函数.(1)求的最小正周期和单调增区间;(2)设,若求的大小.
已知公差大于零的等差数列的前n项和为,且满足:,.(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数c;(3)在(2)的条件下,设,已知数列为递增数列,求实数的取值范围.
在数列{}中,,,设,(1)证明:数列{}是等差数列;(2)求数列{}的前n项和;(3)设,证明:
(1)等差数列中,已知,试求n的值(2)在等比数列中,,公比,前项和,求首项 和项数.
如图,某海轮以30海里/小时的速度航行,在点A测得海面上油井P在南偏东60°,向北航行40分钟后到达点B,测得油井P在南偏东30°,海轮改为北偏东60°航向再航行80分钟到达点C,求P、C间的距离。