(本题12分)已知数列的前项和且是和1的等差中项。(1)求数列与的通项公式;(2)若,求;(3)若是否存在,使?说明理由。
(本小题满分12分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.
如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,求△POC面积的最大值及此时θ的值.
(本小题满分12分)设为数列{}的前n项和,=kn2+n,n∈N*,其中k是常数.(1)求及;(2)若对于任意的m∈N*,,,成等比数列,求k的值.
(本小题满分10分)已知:方程有两个不等的负实根,:方程无实根. 若或为真,且为假. 求实数的取值范围。
已知数列中 数列满足: (1)求证 数列是等比数列(要指出首项与公比) (2)求数列的通项公式.