.已知函数(为常数),直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;(2)当k>0时,试讨论方程的解的个数.
(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:(是参数).
(1)将曲线的极坐标方程和直线参数方程转化为普通方程;
(2)若直线与曲线相交于A、B两点,且,试求实数值.
(本小题满分10分)选修4-1:几何证明选讲如图所示,已知与⊙相切,为切点,为割线,弦,、相交于点,为上一点,且·
(1)求证:;
(2)求证:·=·.
已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且;
(1)求点P的轨迹方程;
(2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.
已知函数.
(1)若曲线经过点,曲线在点处的切线与直线平行,求的值;
(2)在(1)的条件下,试求函数(为实常数,)的极大值与极小值之差;
(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资的期望.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.
(I)求的方程;
(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.