(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.(I)求椭圆方程;(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
已知四棱锥的底面是直角梯形,,,侧面为正三角形,,.如图所示.(1) 证明:平面;(2) 求四棱锥的体积.
在直三棱柱中,(1)求异面直线 与所成角的大小;(2)求多面体的体积。
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为.(1)求棱的长;(2)若的中点为,求异面直线与所成角的大小(结果用反三角函数值表示).
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为.(1)求棱的长;(2)求点到平面的距离.
关于的不等式的解集为。(1)求实数的值;(2)若实系数一元二次方程的一个根,求.