已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若函数的图象是由的图象向右平移个单位长度,再向上平移1个单位长度得到的,当[,]时,求的最大值和最小值.
(15分)数列{an},a1=1, (1)求a2,a3的值; (2)是否存在常数,使得数列是等比数列,若存在,求出的值;若不存在,说明理由; (3)设,
(已知抛物线,过定点的直线交抛物线于A、B两点. (Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上. (Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.
如图所示,已知ABCD是正方形,PD⊥平面ABCD, PD=AD=2. (1)求异面直线PC与BD所成的角; (2)在线段PB上是否存在一点E,使PC⊥平面ADE? 若存在,确定E点的位置;若不存在,说明理由.
(12分) 已知函数 (Ⅰ)求函数f(x)的最小正周期和最小值; (Ⅱ)在给出的直角坐标系中, 画出函数上的图象.
.(本小题满分12分) 某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D. (I)求AB的长度; (Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.