选修4-5:不等式选讲:若关于的方程有实根(Ⅰ)求实数的取值集合(Ⅱ)若对于,不等式恒成立,求的取值范围
已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.
已知函数y=2-x2+ax+1在区间(-∞,3)内递增,求a的取值范围.
对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.
已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式;(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
已知函数f(x)=xm-且f(4)=.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.