已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且;(1)求点P的轨迹方程; (2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50)、[50,60)、…、[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图; (Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分; (Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100)记2分,求抽取结束后的总记分至少为2分的概率.
已知函数 (Ⅰ)求函数的最小正周期及图象的对称轴方程; (Ⅱ)设函数求的值域.
已知a ≥,f(x)=-a2x2+ax+c. (1)如果对任意x∈[0,1],总有f(x)≤1成立, 证明c≤; (2)已知关于x的二次方程f(x)=0有两个不等实根,,且,求实数c的取值范围
已知向量,求 (Ⅰ); (Ⅱ)若的最小值是,求实数的值.
)已知<α<π,0<β<,tanα=-,cos(β-α)= ,求sinβ的值.