高中数学

设函数f(x)=-ax,g(x)=b+2b-1.
(1)若曲线y=f(x)与y=g(x)在它们的交点(1,c)处有相同的切线,求实数a,b的值;
(2)当a=1,b=0时,求函数h(x)=f(x)+g(x)在区间[t,t+3]内的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,求处的切线方程;
(2)设函数
(ⅰ)若函数有且仅有一个零点时,求的值;
(ⅱ)在(ⅰ)的条件下,若,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象在处的切线方程为,其中有e为自然对数的底数。
(1)求的值;
(2)当时,证明
(3)对于定义域为D的函数若存在区间时,使得时,的值域是。则称是该函数的“保值区间”。设,问函数是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,曲线上点处的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下求上的最值及相应的的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知函数.
(1)若函数的图象在处的切线斜率为1,求实数a的值;
(2)若函数上是减函数,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)设,且曲线处的切线与轴平行
(1)求的值,并讨论的单调性;
(2)证明:当时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象在点处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论的单调性;
(Ⅲ)已知,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数∈R). 
(1)若,求点()处的切线方程;
(2)设a≤0,求的单调区间;
(3)设a<0,且对任意的,试比较的大小.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数(m,n为常数,…是自然对数的底数),曲线在点处的切线方程是
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中的导函数),证明:对任意

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)设函数. 曲线在点处的切线的斜率为.
(1)求的值;
(2)若存在,使得,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线  在点  处的切线  平行直线,且点 在第三象限.
(1)求的坐标;
(2)若直线  , 且  也过切点 ,求直线  的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数=).
(1)若在(1,0)切线与圆相切,求的值.
(2)若时,≤0,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当a=2时,求曲线在点A(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性与极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中为实数,常数.
(1) 若是函数的一个极值点,求的值;
(2) 当取正实数时,求函数的单调区间;
(3) 当时,直接写出函数的所有减区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题