已知函数的图象在处的切线方程为,其中有e为自然对数的底数。(1)求的值;(2)当时,证明;(3)对于定义域为D的函数若存在区间时,使得时,的值域是。则称是该函数的“保值区间”。设+,问函数是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由。
如图是一块形状为直角三角形的铁皮,两条直角边,. 现在要将剪成一个矩形,设,. (1)试用表示; (2)问如何截取矩形,才能使剩下 的残料最少?
已知,,,若,求实数的值.
计算下列各题: (1)求值:. (2)化简:.
本题文科生做. 已知复数,若,求的值.
已知函数,,其中是的导函数. (1)对满足的一切的值,都有,求实数的取值范围; (2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.