高中数学

已知函数处取得极值.
(1)求的值;
(2)求函数上的最小值;
(3)求证:对任意,都有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围;
(3)当时,试比较的大小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知的图像过原点,且在点处的切线与轴平行,对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当a=2时,求曲线在点处的切线方程;
(2)求函数的极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)求在点处的切线方程;
(2)求函数上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)求在点处的切线方程;
(2)求函数上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)已知函数,过点P的直线与曲线相切,求的方程;
(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数).
⑴ 若函数的图象在点处的切线的倾斜角为,求上的最小值;
⑵ 若存在,使,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若函数的图象在点处的切线的倾斜角为,求上的最小值;
(2)若存在,使,求a的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = a e x ln x + b e x - 1 x ,曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程为 y = e ( x - 1 ) + 2 .

(I)求 a , b ;

(II)证明: f ( x ) > 1 .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中,且曲线在点处的切线垂直于.
(1)求的值;
(2)求函数的单调区间与极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题