首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 1215

设函数 f ( x ) = a e x ln x + b e x - 1 x ,曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程为 y = e ( x - 1 ) + 2 .

(I)求 a , b ;

(II)证明: f ( x ) > 1 .

登录免费查看答案和解析
相关知识点

设函数f(x)aexlnxbex1x,曲线yf(x)在点(1