高中数学

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;
(Ⅱ)讨论函数的单调性;
(Ⅲ)当时,记函数的最小值为,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

,其中,曲线在点处的切线垂直于轴.
(1)求的值;
(2)求函数的极值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分14分)已知定义在正实数集上的函数,,其中
设两曲线有公共点,且在该点处的切线相同.
(1)用表示
(2)试证明不等式:).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象在点处的切线的斜率为2.
(Ⅰ)求实数的值;
(Ⅱ)设,讨论的单调性;
(Ⅲ)已知,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)求在区间上的最大值;
(Ⅱ)若过点存在条直线与曲线相切,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分13分)已知函数(a、b为常数).
(1)求函数在点(1,)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知函数(为实数)有极值,且在处的切线与直线平行.
(1)求实数的取值范围;
(2)是否存在实数,使得函数的极小值为1,若存在,求出实数的值;若不存在,请说明理由;
(3)设,的导数为,令
求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当,且,求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义在实数集上的函数
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题共10分)
已知函数,当时,有极大值
(Ⅰ)求的值;
(Ⅱ)求函数的极小值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题共10分)
已知函数
(Ⅰ)若曲线处的切线与直线垂直,求的值;
(Ⅱ)若函数在区间()内是增函数,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)当函数在点处的切线与直线垂直时,求实数的值;
(2)若时,恒成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数处取得极值,且曲线在点处的切线垂直于直线
(1)求的值;
(2)若函数,讨论的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中
(1)若m =" –" 2,求在(2,–3)处的切线方程;
(2)当时,函数的图象上任意一点的切线斜率恒大于3 m,求m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题