高中数学

已知函数,其中.
(1)当时,求函数的图象在点处的切线方程;
(2)如果对于任意,都有,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中为实数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)是否存在实数,使得对任意恒成立?若不存在,请说明理由,若存在,求出的值并加以证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象上一点P(1,0),且在P点处的切线与直线平行.
(1)求函数的解析式;
(2)求函数在区间[0,t](0<t<3)上的最大值和最小值;
(3)在(1)的结论下,关于x的方程在区间[1,3]上恰有两个相异的实根,求实数c的取值范围

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分12分)
已知函数,为实数,.
(Ⅰ)若在区间上的最小值、最大值分别为、1,求的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(文)已知处有极值,其图象在处的切线与直线平行.
(1)求函数的单调区间;
(2)若时,恒成立,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数=,(其中,无理数=2.71828 )
(Ⅰ)若=1时,求曲线=在点(1,)处的切线方程;
(Ⅱ)当≥2时,≥0,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的导函数为.求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数的图像与直线相切于点.
(1)求的值;
(2)讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分13分)已知函数(a、b为常数).
(1)求函数在点(1,)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

定义在实数集上的函数
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数
⑴若函数图象上的点到直线距离的最小值是,求的值。
⑵关于的不等式的解集中的整数恰好有3个,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题共10分)已知函数
(Ⅰ)若曲线处的切线与直线垂直,求的值;
(Ⅱ)若函数在区间()内是增函数,求的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题