(本题满分12分)已知函数,为实数,.(Ⅰ)若在区间上的最小值、最大值分别为、1,求、的值;(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;(Ⅲ)设函数,试判断函数的极值点个数.
我舰在岛A南偏西50°相距12海里的B处发现敌舰正从岛A沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,求我舰的速度
已知三角形三个顶点是,,, (1)求边上的中线所在直线方程; (2)求边上的高所在直线方程.
已知定点,,动点到定点距离与到定点的距离的比值是. (Ⅰ)求动点的轨迹方程,并说明方程表示的曲线; (Ⅱ)当时,记动点的轨迹为曲线. ①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围; ②已知,是曲线上不同的两点,对于定点,有.试问无论,两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
已知数列中, (Ⅰ)求数列的通项; (Ⅱ)求数列的前项和; (Ⅲ)若存在,使得成立,求实数的最小值.
已知定义在上的函数(其中). (Ⅰ)解关于的不等式; (Ⅱ)若不等式对任意恒成立,求的取值范围.