设函数在处取得极值,且曲线在点处的切线垂直于直线.(1)求的值;(2)若函数,讨论的单调性.
(本小题满分14分)已知函数是一次函数且在上为增函数,若.(Ⅰ)求的解析式;(Ⅱ)试比较与的大小.
已知,复数,当为何值时,(Ⅰ);(Ⅱ)是纯虚数;(Ⅲ) .
(本题满分14分)已知集合,集合(Ⅰ)若,求实数的取值范围;(Ⅱ)若是单元素集合求实数的值.
(本小题满分14分)设函数.(Ⅰ)当时,求函数的单调区间; (Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在 ()个正数…,使得成立?请证明你的结论.
(本小题满分12分)函数.(Ⅰ)若,且在处取得极小值,求实数的值;(Ⅱ)若函数在上是增函数,试探究应满足什么条件;(Ⅲ)若,不等式对任意恒成立,求整数的最大值.