已知直四棱柱的底面为正方形,,为棱的中点.(1)求证:;(2)设为中点,为棱上一点,且,求证:.
已知函数(Ⅰ)求函数的定义域;(Ⅱ)利用函数的单调性判断,在函数的图象上是否存在不同的两点,使过这两点的直线平行于x轴?并证明你的结论.(Ⅲ)当a、b满足什么条件时,在区间上恒取正值?
已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
已知圆C:和直线l:,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求面积的最大值。
(本小题满分14分)已知定义在正实数集上的函数f(x)=+ax,g(x)=4a2lnx+b,其中a>0,设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.(1)若a=1,求两曲线y=f(x)与y=g(x)在公共点处的切线方程;(2)用a表示b,并求b的最大值.
(本小题满分13分)如图,点M()在椭圆(a>b>0)上,且点M到两焦点的距离之和为4.(1)求椭圆方程;(2)设与MO(O为坐标原点)垂直的直线交椭圆于A、B(A、B不重合),求的取值范围.