(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望.(2)若抽取后不放回,抽完红球所需次数为的分布列及期望.
选修4—5:不等式选讲已知函数,.(Ⅰ)当时,求不等式的解集;(Ⅱ)设,且当时,,求a的取值范围.
选修4—4:坐标系与参数方程坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4-1:几何证明选讲如图所示,圆的两弦和交于点,∥,交的延长线于点,切圆于点.(1)求证:△∽△;(2)如果,求的长.
)已知函数(1)若直线过点,并且与曲线相切,求直线的方程;(2)设函数在上有且只有一个零点,求的取值范围。(其中为自然对数的底数)
已知椭圆C:过点,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若动点P在直线上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线.证明:直线恒过定点,并求出该定点的坐标.