设,其中,曲线在点处的切线垂直于轴.(1)求的值;(2)求函数的极值.
:如图,在三棱锥中,底面ABC,,AP="AC," 点,分别在棱上,且BC//平面ADE(Ⅰ)求证:DE⊥平面;(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
:已知函数。(Ⅰ)求的值域;(Ⅱ)若(x>0)的图象与直线交点的横坐标由小到大依次是,,…,,求数列的前项的和。
(14分)定义:若函数对于其定义域内的某一数,有,则称是的一个不动点. 已知函数.(1)当,时,求函数的不动点;(2)若对任意的实数b,函数恒有两个不动点,求a的取值范围;(3)在(2)的条件下,若图象上两个点A、B的横坐标是函数的不动点,且A、B的中点C在函数的图象上,求b的最小值.(参考公式:的中点坐标为)
(14分) 是定义在R上的函数,对都有,且当时,。(1)求证:为奇函数;(2)求证:是R上的减函数;(3)求在上的最值。
( 14分)已知函数的部分图象如图2所示,(1)求的解析式;(2)求直线与函数图象的所有交点的坐标.