【改编】如图,在边长为1的等边三角形
中,
分别是
边上的点,
,
是
的中点,
与
交于点
,将
沿
折起,使得平面
平面
,得到如图所示的三棱锥
.
(1)证明:
//平面
;
(2)证明:
平面
;
(3)当
时,求三棱锥
的体积
.
如图,正方体ABCD—A1B1C1D1,
则下列四个命题:
①P在直线BC1上运动时,三棱锥A—D1PC的体积不变;
②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;
③P在直线BC1上运动时,二面角P—AD1—C的大小不变;
④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线D1A1.
其中真命题的编号是 .
(本小题满分12分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为
,求
.
如图:已知四棱柱
的底面是菱形,该菱形的边长为1,
,
.
(1)设棱形
的对角线的交点为
,求证:
//平面
;
(2)若四棱柱的体积
,求
与平面
所成角的正弦值.
已知某四棱锥的三视图(单位:cm)如图所示,则该四棱锥的体积是 ()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
如图,边长为2的正方形
绕
边所在直线旋转一定的角度(小于
)到
的位置.
(1)若
,求三棱锥
的外接球的表面积;
(2)若
为线段
上异于
,
的点,
,设直线
与平面
所成角为
,当
时,求
的取值范围.
如图,已知
平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,
,
,
,
.
(1)求证:
平面BCE;
(2)求证:
平面BCE;
(3)求三棱锥
的体积.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,
,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边
上是否存在点N,使
平面
? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.
如图,在直三棱柱ABCA1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥EBCD的体积.